Website is intended for physicians
Search:
Всего найдено: 5

Abstract:

Introduction: one of directions in development of intravascular diagnostic methods is creation of stations or development of methods that allow combining or uniting possibilities of different modalities. This approach makes it possible to overcome limitations inherent in each method of invasive vascular diagnostics, including angiography. This work is devoted to the analysis of possibilities and first results of using the SyncVision station (Philips Volcano), which allows, in various combinations, to carry out joint registration of angiography data, intravascular ultrasound (IVUS) and instantaneous blood flow reserve (iFR) in various combinations - a non-hyperemic version of fractional flow reserve study.

Aim: was to describe possibilities provided by the use of joint recording of data from angiography, IVUS and real-time instantaneous blood flow reserve, the technique for performing these procedures, as well as to analyze the application of these methods in a department with a large volume of intravascular studies.

Material and methods: the first experience in Russian Federation of the clinical use of the SyncVision station, which is an addition to the s5i intravascular ultrasound system (Philips Volcano), is presented. The station allows you to implement five options that expand the operator's ability to analyze study data and develop a treatment strategy directly at the operating table: co-registration of angiography and intravascular ultrasound (IVUS) data; co-registration of angiography data and instantaneous flow reserve (iFR); triple co-registration - angiography, IVUS and iFR; modification of the program for the quantitative calculation of coronary artery stenosis (QCA); real-time image enhancement software for interventional devices.

Results: studies using co-registration with angiography accounted for 21% of all IVUS procedures and 62,4% of iFR procedures. In 67,3% of all studies with angio-IVUS co-registration, the indication for this diagnostic variant was an extended lesion of artery, which required clarification of length of stenotic area, localization of reference segments, and diameter of artery at different levels. In 30 of these patients, triple co-registration was performed. To clarify the hemodynamic significance of lesion with an angiographically indeterminate or borderline picture, co-registration was performed in 13,2% of all cases, to study a bifurcation lesion with a significant difference in the reference segments and angiographically difficult to determine the entry of lateral branch - in 7,3%.

Based on results of triple co-registration, the decision to perform surgical treatment was made in 30 out of 42 patients (71,4%).

Conclusion: joint registration of IVUS data, coronary angiography, and instantaneous flow reserve (iFR) in real time, forms a new diagnostic modality that significantly expands possibilities of intraoperative examination and affects the planning or analysis of intervention results.

 

Abstract:

Introduction: the importance of intravascular diagnostic methods and the frequency of their use in clinical practice is steadily increasing. However, in the Russian Federation, studies on the analysis of possibilities of intravascular imaging or physiology are sporadic, and statistical data are presented only in very generalized form. This makes it relevant to create a specialized register dedicated to these diagnostic methods.

Aim: was to present the structure, tasks and possibilities of the Russian registry for the use of intravascular imaging and physiology based on results of the first year of its operation.

Material and methods: In total, in 2021, forms were filled out for 2632 studies in 1356 patients.

Studies included all types of intravascular imaging and physiology - intravascular ultrasound, optical coherence tomography, measurement of fractional flow reserve and non-hyperemic indices.

The registry's web-based data platform includes 14 sections and 184 parameters to describe all possible scenarios for applying these methodologies. Data entry is possible both from a stationary computer and from mobile devices, and takes no more than one minute per study. Received material is converted into Excel format for further statistical processing.

Results: 13 departments participated in the register, while the share of the eight most active ones accounted for 97,5% of all entered forms. On average, 1.9 studies per patient were performed, with fluctuations between clinics from 1,6 to 2,9. Studies of the fractional flow reserve accounted for 40% of total data array, intravascular ultrasound - 37%, optical coherence tomography - 23%. Of all studies, 80% were performed on coronary arteries for chronic coronary artery disease, 18% - for acute coronary syndrome, 2% were studies for non-coronary pathology. In 41% of cases, studies were performed at the diagnostic stage, without subsequent surgery. In 89,6% of cases, this was due to the detection of hemodynamically insignificant lesions, mainly by means of physiological assessment. In 72% of cases, the use of intravascular imaging or physiology methods directly influenced the tactics or treatment strategy - from deciding whether to perform surgery or not to choose the optimal size of instruments or additional manipulations to optimize the outcome of the intervention. In the clinics participating in the register, the equipment of all major manufacturers represented on the Russian market was used.

Conclusions: the design of the online registry database is convenient for data entry. Participation in the registry of most departments that actively and systematically use methods of intravascular imaging and physiology ensured the representativeness of obtained data for analysis in interests of both practical medicine and industry, as well as for scientific research in the field of intravascular imaging and physiology. The register has great potential for both quantitative and qualitative improvement.

 

 

Abstract:

Introduction: development of intravascular diagnostic methods has significantly increased the amount of information in the study of various vessels in comparison with standard angiography. Technological and software improvement of optical coherence tomography (OCT) allows expanding diagnostic capabilities and providing greater convenience for analyzing of results of this method of intravascular examination, which leads to an increase in its importance both for daily clinical practice and in scientific research.

Aim: was to describe the methodology of performing a new modification of OCT and to analyze accumulated experience, advantages and possibilities provided by this method.

Material and methods: the modern version of the complex for optical coherence tomography OPTIS allows to implement such new features as automatic indication of malapposition of stents, easy-to-perceive three-dimensional image of examination data in various versions, joint presentation (co-registration) of angiography and OCT data in real time. The first experience of clinical use of this system in the Russian Federation is presented, with an analysis of priority indications for the use of new possibilities. Using the angio-OCT-co-registration function, 309 studies of 205 arteries in 178 patients were performed, which accounted for 63,3% of all OCT procedures performed in our department. 

Results: priority indications for the use of the method were identified, which primarily include: cases of extended stenoses with an uncertainty in the hemodynamic significance of individual sections or the entire lesion as a whole; difficulties in constructing an optimal projection of the angiogram (without overlapping branches and significant shortening of the target area); bifurcation lesions; diagnostics of thrombus, dissections, plaque ruptures, severe calcification, including in acute coronary syndrome; selection of the optimal size of biodegradable scaffold and preparation of the artery for its implantation; intermediate or final control of results of coronary artery stenting. The use of co-registration of angiography and OCT contributes to a more accurate determination of the area of interest during repeated studies, which is especially important for the dynamic assessment of the patient's condition and for scientific research.

Conclusions: the development and modernization of optical coherence tomography causes an increase in its importance both in daily clinical practice and in scientific research. The possibility of spatial co-registration of OCT data with angiographic images, as well as new options for automatic processing of resulting images, including stent apposition assessment, significantly increase the operator's ability to quickly and accurately analyze examination data directly at the operating table.

 

References

1.     Demin VV. Clinical guide to intravascular ultrasound. Orenburg. Yuzhnyj Ural. 2005: 400 [In Russ].

2.     Raber L, Mintz GS, Koskinas KC, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention. 2018; 14: 656-677.

https://doi.org/10.4244/EIJY18M06_011

3.     Johnson TW, Raber L, di Mario C, et al. Clinical use of intracoronary imaging. Part 2: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention. 2019; 15: 434-451.

https://doi.org/10.4244/EIJY19M06_02

4.     Van der Sijde JN, Guagliumi G, Sirbu V, et al. The OPTIS Integrated System: real-time, co-registration of angiography and optical coherence tomography. EuroIntervention. 2016; 12: 855-860.

https://doi.org/10.4244/EIJV12I7A140

5.     Karanasos A, Van der Sijde JN, Ligthart J, et al. Utility of Optical Coherence Tomography Imaging with Angiographic Co-registration for the Guidance of Percutaneous Coronary Intervention. Radcliffe Cardiology.com. 2015. [Internet source]

6.     Demin VV, Demin DV, Seroshtanov EV, et al. Clinical issues of optical coherence tomography for coronary diagnosis. International Journal of Interventional Cardioangilogy. 2016; 44: 34-48 [In Russ].

7.     Ermolaev PA, Khramykh TP, Vyaltsin AS. Use of optical coherence tomography for intermediate coronary artery lesions. Circulation Pathology and Cardiac Surgery. 2019; 23(3): 47-56 [In Russ].

https://doi.org/10.21688/1681-3472-2019-3-47-56

8.     Onuma Y, Okamura T, Muramatsu T, et al. New implication of three-dimensional optical coherence tomography in optimising bifurcation PCI. EuroIntervention. 2015; 11: 71-74.

https://doi.org/10.4244/EIJV11SVA15

9.     Alegr?a-Barrero E, Foin N, Chan PH, et al. Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: choosing the right cell matters. EuroIntervention. 2012; 8: 205-213.

https://doi.org/10.4244/EIJV8I2A34

10.   Tyczynski P, Ferrante G, Kukreja N, et al. Optical coherence tomography assessment of a new dedicated bifurcation stent. EuroIntervention. 2009; 5: 544-551.

https://doi.org/10.4244/EIJV5I5A89

11.   Souteyrand G, Amabile N, Combaret N, et al. Invasive management without stents in selected acute coronary syndrome patients with a large thrombus burden: a prospective study of optical coherence tomography guided treatment decisions. EuroIntervention. 2015; 11: 895-904.

https://doi.org/10.4244/EIJY14M07_18

12.   Souteyrand G, Arbustini E, Motreff P, et al. Serial optical coherence tomography imaging of ACS-causing culprit plaques. EuroIntervention. 2015; 11: 319-324.

https://doi.org/10.4244/EIJV11I3A59

13.   Mustafina IA, Pavlov VN, Ishmetov VSh, et al. Identification of plaque morphology in acute coronary syndrome by optical coherence tomography. Bashkortostan Medical Journal. 2017; 12; 4(70): 27-32 [In Russ].

14.   Allahwala UK, Cockburn JA, Shaw E, et al. Clinical utility of optical coherence tomography (OCT) in the optimisation of Absorb bioresorbable vascular scaffold deployment during percutaneous coronary intervention. EuroIntervention. 2015; 10: 1154-1159.

https://doi.org/10.4244/EIJV10I10A190

15.   Shugushev ZK, Maksimkin DA, Vorob'eva YuS, et al. Results of biodegradable vascular endoprotheses implantation in ischemic heart disease patients with type 2 diabetes. Russian Journal of Cardiology. 2016; 9(137): 19-24 [In Russ].

https://doi.org/10.15829/1560-4071-2016-9-19-24

16.   R?ber L, Radu MD. Optimising cardiovascular outcomes using optical coherence tomography-guided percutaneous coronary interventions. EuroIntervention. 2012; 8: 765-771.

https://doi.org/10.4244/EIJV8I7A118

17.   Tanigawa J, Barlis P, Dimopoulos K, et al. Optical coherence tomography to assess malapposition in overlapping drug-eluting stents. EuroIntervention. 2008; 3(5): 580-583.

https://doi.org/10.4244/EIJV3I5A104

18.   Radu M, J?rgensen E, Kelb?k H, et al. Optical coherence tomography at follow-up after percutaneous coronary intervention: relationship between procedural dissections, stent strut malapposition and stent healing. EuroIntervention. 2011; 7: 353-361.

https://doi.org/10.4244/EIJV7I3A60

19.   Trusov IS, Nifontov EM, Biryukov AV, et al. The use of optical coherence tomography imaging of the vascular wall of the coronary arteries before and after stenting. Regional blood circulation and microcirculation. 2019; 18(1): 77-85 [In Russ].

https://doi.org/10.24884/1682-6655-2019-18-1-77-85

20.   Demin VV, Galin PYu, Demin DV, et al. The comparison of intravascular ultrasound guided and angiography guided implantation of drug-eluting stents: The randomized trial ORENBURG. Part 1: Study design, direct clinical results. Diagnostic & Interventional Radiology. 2015; 9(3): 31-43 [In Russ].

21.   Demin VV, Murzajkina MM, Galin PYu, et al. Comparison between implantation of drug-eluting stents under control of intravascular ultrasound and angiography: The randomized trial ORENBURG. Part 2: The data of angiography and intravascular methods of visualization. Diagnostic & Interventional Radiology. 2016; 10(2): 31-47 [In Russ].

22.   Demin VV, Gusev SD, Murzaykina MM, et al. Immediate and early results of a clinical trial comparing different strategies of drug-eluting stents implantation under IVUS and angiographic guidance. International Journal of Interventional Cardioangilogy. 2016; 44: 49-59 [In Russ].

23.   Demin VV, Demin AV, Demin DV, et al. The drug-eluting balloons for coronary arterial restenosis: 7-year experience. International Journal of Interventional Cardioangilogy. 2016; 44: 59-71 [In Russ].

Abstract:

Aim: was to provide design and direct clinical outcomes of ORENBURG (Optimal dRug Eluting steNts implantation guided By combination of intravascular Ultrasound and optical coheRence tomoGraphy) - single-center randomized clinical trial.

Materials and methods: 1032 patients were included in this study These patients were treatec with 6 types of drug eluting stents. Patients were randomized not only to the type of implanted stent, but also to the type of guidance of the procedure: intravascular ultrasound (IVUS) - 676 patients, quantitative coronary arteriography (QCA) - 356 patients. Before the procedure was finished, all patients underwent optical coherence tomography (OCT) analysis. Regardless of its results no more adjacent procedures were performed.

Results: we provide characteristics of patients included in this study These characteristics showed an absence of significant differences between two groups of patients (IVUS and QCA groups) and between subgroups of patients, received different types of DES. While analyzing parameters of index procedure, it was emphasized that IVUS group involved a bigger number of patients with left main disease and bifurcation disease, and also a bigger number of stents per lesion, diameter of first stent, total length of used stents, maximal diameter of the postdilatation balloon. Characteristics of Nobori stent (range of sizes) can explain that significantly smaller diameter and length of the first and the second stent implanted, total length of stents per lesion, and maximal diameter of postdilatation balloon were recorded in the Nobori stent subgroup of patients. Besides that, in that subgroup were no patients with left main disease, smaller number of patients with angiographically evident calcifications, but was a bigger number of patients with circumflex artery disease. Immediate effect of the implantation was obtained in 100% of patients. According to the short-term follow-up, 1 patient died due to the myocardial infarction in the region of the untreated artery

Conclusion: angiographic data, and IVUS and OCT results of analyzed patients are going to be published in the next article.  

 

References 

1.    Mintz G.S. Intracoronary Ultrasound. London and New York: Taylor & Francis. 2005, 408.

2.    Colombo A., Tobis J. Techniques in Coronary Artery Stenting. London: Martin Dunitz. 2000, 422.

3.    Demin V.V. Klinicheskoe rukovodstvo po vnutrisosudistomu ultrazvukovomu skanirovaniyu [Clinical guide to intravascular ultrasound]. Orenburg: Yuzhnyj Ural [South Ural]. 2005; 400.[In Russ].

4.    Demin V.V., Zelenin V.V., Zheludkov A.N. et al. Vnutrisosudistoe ultrazvukovoe skanirovanie pri intervencionnyh vmeshatelstvah na koronarnyh arteriyah: optimalnoe primenenie i kriterii ocenki [Intravascular ultrasound scanning during coronary interventions: optimum application and assessment criteria]. International Journal of Interventional Cardioangiology.2003; 1: 66-72 [In Russ].

5.    Demin V.V., Demin D.V., Dolgov S.A. et al. Sravnenie informativnosti vnutrisosudistogo ultrazvukovogo issledovania I opticheskoj kogerentnoj tomografii vo vremj operacii stentirovanij koronarnyh arterij. [Comparison of intravascular ultrasound and optical coherence tomography informativeness in coronary stenting]. Ultrazvukovye i luchevye diagnostiki v klinicheskoj praktike [Ultrasound and radiology technic in clinical practice]. Ad by Sandrilov V.A., Fisenko E.P., Kulagina T.Yu. Moscow: «Firma STROM». 2012; 12-18 [In Russ].

6.    Demin V.V., Demin D.V., Dolgov S.A. et al. Primemenie vnutrisosudistogo ultrazvukovogo issledovania i opticheskoj kogerentnoj tomografii pri implantacii koronarnyh stentov s lekarstvennym pokrytiem. [Using of intravascular ultrasound and optical coherence tomography in coronary drug-eluting stents implantation]. Oblastnaj bolnitza v sisteme regionalnogo zdravoohranenij. [Regional clinic in regional health care system]. Orenburg: Gazprompechat. 2012; 73-77 [In Russ].

7.    Oemrawsingh P.V., Mintz G.S., Scalij M.J. et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenosis: Final results of randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003; 107: 62-67.

8.    Gaster A.L., Slothuus Skjoldborg U., Larsen J. et al. Continued improvement of clinical outcome and cost effectiveness following intravascular ultrasound guided PCI: Insights from a prospective, randomized study. Heart. 2003; 89 (9): 1043-1049.

9.    Gil R.J., Pawlowski T., Dudek D. et al. Comparison of angiographically guided direct stenting technique with direct stenting and optimal balloon angioplasty guided with intravascular ultrasound. The multicenter, randomized trial results. Am. HeartJournal. 2007; 154 (4): 669-675.

10.  Frey A.W., Hodgson J.M., Muller C. et al. Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter. Results from the randomized Strategy for Intracoronary ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation. 2000; 102 (20): 2497-2502.

11.  Fitzgerald P.J., Oshima A., Hayase M. et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation. 2000; 102 (5): 523-530.

12.  Sousa A., Abizaid A., Mintz G.S. et al. The influence of intravascular ultrasound guidance on the in-hospital outcomes after stent implantation: results from the Brazilian Society of Interventional Cardiology Registry - CENIC. J. Am. Coll. Cardiol. 2002; 39: 54A.

13.  Russo R.J., Attubato M.J., Davidson C.J. et al. Angiography versus intravascular ultrasound-directed stent placement: final results from AVID. Circulation. 1999; 100: I-234.

14.  Russo R.J., Silva P.D., Teirstein P.S. et al. A Randomized Controlled Trial of Angiography versus Intravascular Ultrasound-Directed Bare-Metal Coronary Stent Placement (The AVID Trial). Cathet Cardiovasc Intervent. 2009; 2: 113-123.

15.  Schiele F., Meneveau N., Vuillemenot A. et al. Impact of intravascular ultrasound guidance in stent deployment on 6-month restenosis rate: a multicenter, randomized study comparing two strategies - with and without intravascular ultrasound guidance. RESIST Study Group. REStenosis after IVUS guided Stenting. J. Am. Coll. Cardiol.1998; 32: 320-328.

 

 

Abstract:

Aim: was to provide data of examination of patients of single-center randomized clinical trial ORENBURG (results of angiography, intravascular ultrasound (IVUS), optical coherence tomography (OCT), which were made at different stages of primary operations).

Materials and methods: 1032 patients were enrolled into this trial and uniformly distributed into 6 subgroups, representing 6 different types of drug-eluted stents implanted. Patients in this study were also divided into IVUS guidance and angiography guidance subgroups in 2 to 1 ratio. All patients underwent the OCT examination at the final stage of the procedure, and according to OCT results, no additional interventions were performed. Data of instrumental studies was analyzed with use of modern statistical methods and programs.

Results: according to angiographic data, in-segment lesion length and lumen volume before the operation were higher in IVUS group. After intervention, lumen volume was still higher, and % diameter stenosis and % area stenosis were lower in IVUS group in comparison with angiography group. Comparison of IVUS and angiography data after predilatation showed that IVUS was associated with bigger absolute values of minimum lumen diameter (MLD) and minimum lumen area (MLA), while % diameter stenosis and % area stenosis were similar between two groups. At control IVUS and OCT studies the region of the maximum residual stenosis did not usually match with the site of the baseline maximum stenosis. Quantitative data in these segments significantly differed. According to control IVUS data, additional angioplasty in stent was needed in 10,1 % of patients. Additional procedure allowed to improve all quantitative indicators. Implantations of different types of stents were performed using similar interventional technic but randomized by selection of stent eluting. Nevertheless, initial technical parameters of endoprosthesis affected quantitative results of the implantation. Nobori stent showed biggest differences in quantitative results of implantation in comparison with other types of stents and to the whole group.

Conclusion: ORENBURG is second large trial in terms of volume, and second large trial that was initiated, and which was dedicated to the comparison of interventional strategies using drug-eluting stents under intravascular visualization or angiography guidance. The minimal incidence of MACE was registered during the period of in-hospital stay Only one case of cardiac death was registered, and it was not associated with the region of the treated artery. Results of ORENBURG trial confirm the tendency to absolute measures recieved by intravascular methods of visualization, and used for characterization of defeated vessel excess absolute measures received by angiography.

 

References

1.     Intravascular Ultrasound. Ad by Erbel R., Roelandt J.R.T.C., Ge J., Gorge G. London: Martin Dunitz. 1998, 284.

2.     Mintz G.S. Intracoronary Ultrasound. London and New York: Taylor & Francis. 2005, 408.

3.     Colombo A., Tobis J. Techniques in Coronary Artery Stenting. London: Martin Dunitz. 2000, 422.

4.     Demin V.V. Klinicheskoe rukovodstvo po vnutrisisudistomu ultrazvukovomu skanirovaniyu [Clinical guide to intravascular ultrasound]. Orenburg: Yuzhnyj Ural [South Ural]. 2005; 400 [In Russ].

5.     Demin V.V., Zelenin V.V., Zheludkov A.N. et al. Vnutrisosudistoe ultrazvukovoe skanirovanie pri intervencionnih vmeshatelstvah na koronarnih arteriyah: optimalnoe ptimenenie I kriterii ocenki. [Intravascular ultrasound scanning during coronary interventions: optimum application and assessment criteria]. International Journal of Interventional Cardioangiology. 2003; 1: 66-72 [In Russ].

6.    Sandrikov V.A., Demin V.V., Revunenkov G.V. Kateternaya echographia serdechno-sosudistoy sistemy I polostnyh obrazovaniy [Catheter echography of cardiovascular system and cavitary structures]. Moscow: «Firma Strom». 2005; 256 [In Russ].

7.     2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A Report of the AmericanCollege of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011; 124:e574-e651.

8.     2013 ESC guidelines on the management of stable coronary artery disease. The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European Heart Journal. 2013; 34: 2949-3003.

9.     2014 ESC/EACTS Guidelines on myocardial revascularization. The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EAPCI). European Heart Journal. 2014; 35: 2541-2619.

10.   Oemrawsingh P.V., Mintz G.S., Scalij M.J. et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenosis: Final results of randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003; 107: 62-67.

11.   Gaster A.L., Slothuus Skjoldborg U., Larsen J. et al. Continued improvement of clinical outcome and cost effectiveness following intravascular ultrasound guided PCI: Insights from a prospective, randomized study. Heart. 2003; 89 (9): 1043-1049.

12.   Gil R.J., Pawlowski T., Dudek D. et al. Comparison of angiographically guided direct stenting technique with direct stenting and optimal balloon angioplasty guided with intravascular ultrasound. The multicenter, randomized trial results. Am. Heart Journal. 2007; 154 (4): 669-675.

13.   Frey A.W., Hodgson J.M., Muller C. et al. Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter. Results from the randomized Strategy for Intracoronary ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation. 2000; 102 (20): 2497-2502.

14.   Fitzgerald P.J., Oshima A., Hayase M. et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation. 2000; 102 (5): 523-530.

15.   Sousa A., Abizaid A., Mintz G.S. et al. The influence of intravascular ultrasound guidance on the in-hospital outcomes after stent implantation: results from the Brazilian Society of Interventional Cardiology Registry - CENIC. J. Am. Coll. Cardiol. 2002; 39: 54A.

16.   Russo R.J., Attubato M.J., Davidson C.J. et al. Angiography versus intravascular ultrasound-directed stent placement: final results from AVID. Circulation. 1999; 100: I-234.

17.   Russo R.J., Silva P.D., Teirstein P.S. et al. A Randomized Controlled Trial of Angiography versus Intravascular Ultrasound-Directed Bare-Metal Coronary Stent Placement (The AVID Trial). Cathet Cardiovasc Intervent. 2009; 2: 113-123.

18.   Parise H., Maehara A., Stone G.W. et al. Metaanalysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drug-eluting stent era. Am. J. Cardiol. 2011; 107 (3): 374-382.

19.   Casella G., Klauss V., Ottani F. et al. Impact of intravascular ultrasound-guided stenting on long-term clinical outcome: a meta-analysis of available studies comparing intravascular ultrasound-guided and angiographically guided stenting. Cathet Cardiovasc Intervent. 2003; 59: 314-321.

20.   Mintz G.S., Weissman N.J. Intravascular ultrasound in the drug-eluting stent era. JACC. 2006; 48 (3): 422-428.

21.   Claessen B.E., Mehran R., Mintz G.S., et al. Impact of intravascular ultrasound imaging on early and late clinical outcomes following percutaneous coronary intervention with drug-eluting stents. JACC; Cardiovasc Interv. 2011; 4 (9): 974-981.

22.   Hur S.-H., Kang S.-J., Kim Y-H., et al. Impact of intravascular ultrasound-guided percutaneous coronary intervention on long-term clinical outcomes in a real world population. Cathet Cardiovasc Intervent. 2013; 81: 407-416

23.   Roy P., Steinberg D.H., Sushinsky S.J., et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. European Heart Journal. 2008; 29: 1851-1857.

24.   Witzenbichler B., Maehara A., Weisz G. et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation. 2014; 129 (4): 463-470.

25.   De la Torre Hernandez J.M., Baz Alonso J.A., Gomez Hospital J.M. et al. Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries. JACC; Cardiovasc Interv. 2014; 7 (3): 244-254.

26.   Gao X.F., Kan J., Zhang J.J. et al. Comparison of one-year clinical outcome between intravascular ultrasound-guided versus angiography-guided implantation of drug-eluting stents for left main lesions: a single-center analysis of a 1,016-patient cohort. Patient Prefer Adherence. 2014; 8: 1299-1309.

27.   Park S.-J., Kim Y-H., Park D.-W. et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Intervent. 2009; 2: 167-177.

28.   Ahn S.G., Yoon J., Sung J.K. et al. Intravascular ultrasound-guided percutaneous coronary intervention improves the clinical outcome in patients undergoing multiple overlapping drug-eluting stent implantation. Korean Circ Journal. 2013; 43: 231-238.

29.   Chen S.-L., Ye F., Zhang J.-J. et al. Intravascular ultrasound-guided systematic two-stent techniques for coronary bifurcation lesions and reduced late stent thrombosis. Cathet Cardiovasc Intervent. 2013; 81: 456-463.

30.   Kim S.H., Kim YH., Kang S.J. et al. Long-term outcomes of intravascular ultrasound-guided stenting in coronary bifurcation lesions. Am. J. Cardiol. 2010; 106 (5): 612-618.

31.   Klersy C., Ferlini M., Raisaro A. et al. Use of IVUS guided coronary stenting with drug eluting stent: a systematic review and meta-analysis of randomized controlled clinical trials and high quality observational studies. Int J Cardiol. 2013; 170 (1): 54-63.

32.   Zhang Y, Farooq V., Garcia-Garcia H.M. et al. Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomized trial and ten observational studies involving 19,619 patients. EuroIntervention. 2012; 8 (7): 855-865.

33.   Ahn J.M., Kang S.J., Yoon S.H. et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am. J. Cardiol. 2014; 113 (8): 1338-1347.

34.   Jang J.S., Song YJ., Kang W. et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC: Cardiovasc Interv. 2014; 7 (3): 233-243.

35.   Hong S.-J., Kim B.-J., Shin D.-H. Effect of Intravascular Ultrasound-Guided vs Angiography-Guided Everolimus-Eluting Stent ImplantationThe IVUS-XPL Randomized Clinical Trial. JAMA. 2015; 314 (20): 2155-2163.

36.   Demin V.V., Galin P.Yu., Demin D.V. et al. Sravnenie strategij implantazii stentov s lekarstvennym pokrytiem pod kontrolem vnutrisosudistogo ultrazvukovogo skanirovaniya ili angiografii: randomizirovannoe issledovanie «Orenburg». Chast’ 1. Aktual’nost’, dizajn issledovaniya, neposredstvennye klinicheskie resul’taty [The comparison of intravascular ultrasound guided and angiography guided implantation of drug-eluting stents: The randomized trial «Orenburg». Part 1: Study design, direct clinical results]. Diagnostic & Interventional Radiology. 2015; 9 (3): 31-43 [In Russ].

 

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы